These are sample MCQs to indicate pattern, may or may not appear in examination

University of Mumbai

Online Examination 2020

Program: BE Electronics and Telecommunication Engineering

Curriculum Scheme: Revised 2016

Examination: Final Year Semester VIII

Course Code: ECCDLO8044 and Course Name: Network Management in Telecommunication

Time: 1hour

Max. Marks: 50

Note to the students:- All the Questions carry equal marks .

Q	NOC in network management is
A	Network objection criteria
В	Network operation criteria
С	Network Operation Center
D	Network ojection center
Q	INMS in network management is
	international network management
A	system
В	integrated network management system
С	internet network management system
D	inter network management system
Q	EMSs in network management is
A	emerging mangement systems
В	e mangement systems
С	elegent mangement systems
D	element mangement systems
	Network failure is caused more often by
Q	failure than failure of passive links

A	a node
В	a manager
С	power
D	IT manager
	Planning is task of which functional group
Q	of network management?
A	Network provisioning
В	Network operations
С	Network maintainance
D	Network deployment
	Design is task of which functional group of
Q	network management?
A	Network provisioning
В	Network operations
С	Network maintainance
D	Network deployment
	Fault management & service restoration is
	a task of which functional group of
Q	network management?
A	Network provisioning
В	Network operations
С	Network maintainance
D	Network deployment
	Configuration management is task of
	which functional group of network
Q	management?
А	Network provisioning
В	Network maintainance
С	Network deployment

	Performance management & traffic
	analysis is task of which functional group
Q	of network management?
А	Network deployment
В	Network operations
С	Network provisioning
D	Network maintainance
	Network installation is related with which
0	functional group of network management?
A	Network maintainance
В	Network provisioning
c	Network operations
D	Network deployment
	The group deals with clients and
	subscribers in providing services planned
Q	and designed by the Engineering group.
A	Network provisioning
В	Emgineering
С	customer Relations
D	Maintainance
Q	Function of Fault management is
	Locating problems or faults on the data
A	network.
В	Installation of new hardware or software
	Controlling access to information on the
С	data network
D	Provides audit trails and sounds alarms

	Measuring the performance of the
	network hardware, software and media is
Q	a function of
A	Fault Management
В	Performance management
С	Security management
D	Accounting management
	Traffic overload Connectivity failure These
0	are common problems related to
A	Network failure problem
B	Accounting
C	Security
D	configuration
Q	Sniffer, Ping are the tools used for
A	Troubleshooting
В	Accounting Management
С	Security Management
D	Environment Management
Q	Trouble ticket administration is function of
A	Network installation and network group
В	Network Operation Centre
С	Network planning and design group
D	Users
	Primary responsibility of Network
Q	provisioning
А	Accounting
В	Trouble ticket generation
С	planning and Design
D	Security

	An is used to manage end-to-end
	availability of acircuit that deploys
	multivendor and multitechnology network
Q	elements.
A	Integrated NMS
В	QoS
С	Inventory management
D	Customer Relation managemant
	In Network Management Dumbell
	Architecture the message consist of
	management information data and
Q	
A	Mangement controls
В	Mangement status
С	Vendor
D	Type, iD
Q	OSI stands for ?
A	open system interconnection
В	open system interface
C	optical service implementation
D	open service Internet
	To Monitor Alarm is a function performed
Q	by
A	Manager
В	Agent
C	Network element
D	Network managed object
	Who uses Management Information Base
Q	(MIB).
A	Agent
В	Manager
С	Network element
D	Agent and management processes

	The measured or adminstratively
	configured value of the elements of the
Q	network is associated with
A	Management Information Base (MIB)
В	Management Data Base (MDB)
С	Agent
D	Network element
	All managed objects are given an object
	identifier. Object identifier always starts
Q	with
А	1.3.6.1
В	1.3.1.6
С	1.1.3.6
D	1.2.6.1
	Which from the following is not the basic
	attributes of a managed object type form
Q	the Internet perspective
А	Name
В	Syntax
С	Access
D	Operations
	Consider the following ASN.1 module
	person-namePerson-Name::=
	{
	first "John",
	middle "I",
	last "Smith"
	}
	The module comprises how many
Q	assignments?
А	one
В	two
С	three

D	four
	Consider the simple type of data type &
Q	identify the ASN.1 module
A	PageNumber ::= INTEGER
В	BookPageNumber ::= SEQUENCE
	BookPages ::= SEQUENCE OF {
С	BookPageNumber}
	BookPages ::= SEQUENCE
	OF{SEQUENCE{ChapterNumber, Separator,
D	PageNumber}}
	Which from the following defines selection
	of one value from a specified ist of distinct
Q	types
A	SEQUENCE
В	SET OF
С	CHOICE
D	BEGIN
	Select the correct TLV for the string of
	octate 0C4AH, for universal class, primitive
	and data type of tag value 4 with one
Q	octate length field.
	00000100 00000010 00001100
A	01001010
	00001000 00000010 00001100
В	00011011
	10000100 00000010 00001100
С	00011010
	10000100 00000010 00001100
D	00101010

	Which model includes the components
	mentioned below: management
	application processes , layer
	managementbetween layers, and layer
Q	operation
A	Organization Model
В	Information Model
С	Communication Model
D	Functional Model
	For management communication transfer
Q	which protocol is used by Internet
A	СМІР
В	CMIS
С	SNMP
D	UDP
	In OSI network management organization
Q	model Agent
A	Gather information from Objects
В	Houses management agent
С	monitor Alarms
D	provide user interface
	The deals with the structure and
	the organization of management
Q	information.
A	Information model
В	Functional model
С	Organization model
D	Communication model
	SMI describes how the management
	information is structured and deals
	with the relationship and storage of
Q	management information.

A	MIB
В	MDB
С	SMI
D	Agent
	What are the Network Objects in
Q	organization model
A	Manager
В	Network elements
С	MDB
D	Database
	In Three-Tier model work of ais to
	collects data from the network elements,
	processes them, and stores the results in
Q	its database.
A	Agent
В	Manaager
С	Object
D	Managed object
	The structure defining the syntax and
	semantics of management information is
Q	specified by ,
	Structure of management Information
A	(SMI)
В	Management Information Base (MIB)
С	agent MIB
D	Mannager MIB
	The addresses how
	management data is communicated
	between agent and manager processes, as
	well as between
Q	manager processes themselves.
А	Functional model
В	Information model

С	Communication Model
D	Organization model
	counts the amount of traffic
	sent between each pair of network
	addresses discovered by the probe in
Q	RMON 2.
A	Application Layer Host Group
В	Application Layer Matrix
C	Network Layer Matrix Group
D	Network Layer Host Group
	An agent is a host that runs SNMP
Q	process
A	client
В	server
C	manager
D	main
	SNMP uses two other protocols: and
Q	
A	MIB,SMTP
В	SMI,MIB
C	FTP,SMI
D	HTTP,SMI
	SMI emphasizes three atributes to handle
Q	an object: , &
A	name,data type, size
В	name,size,encoding methos
C	name, datatype,encoding method
D	name,size,encoding rule
	A full duplex mode increases the capacity
Q	of each domain from
А	10 to 20 mbps
В	20 to 30 mbps
С	30 to 40 mbps

aged.
-
n

	In management evenuiow SNMD is
	responsible for creating a message, called
	a, and
Q	encapsulating the encoded message.
A	GetRequest message
В	SetRequest message
С	Response
D	Тгар
	In SNMP each has its own MIB2, which
	is a collection of all the objects that the
Q	manager can manage.
A	Agent
В	manager
С	object
D	MDB
	Instead of the network manager
	continously monitoring events and
	calculating the information an
	intermediate
	agent called is inserted between the
	managed object and the network
0	manager.
A	Remote Monitoring (RMON)
В	SNMP manager
- C	Managed objects
D	MDB
-	
	When NMS behave as a Manager and an
	Agent We can have at the central
	loation that converts data into a set that is
	SNMP compatible and communicates with
0	the SNMP manager
Q I	the Jivivir Illallagel.

A	Proxy server
В	Rmon
С	HFC
D	SNMP agent
	The message is generated by an
	agent process. It is generated only on
	receipt of a get-request, get- next-
	request, or set- request message from a
Q	mangement process.
A	get-response
В	SetRequest message
С	set-response
D	next-response
	A TMN is intended to support a wide
	variety of management areas which cover
	the planning, installation, operations,
	administration, of
	telecommunications networks and
	services.
Q	
A	maintenance and provisioning
В	Business objectives
C	functions
D	security
	Customer in TMN conceptual model are
Q	provided service by,
А	Service provider
В	Customer provider
С	Workstations
D	Server

	An TMN reference point is an interface
	between two operations system function
	(OSF) blocks belonging to two diferent
Q	TMNs
А	x-class
В	f-class
С	q-class
D	a-class
	In TMN a can be considered to
	be a conceptual point of information
Q	exchange between function blocks.
А	agent
В	reference point
С	Tracking point
D	Operating point
	TMN architecture made up of five function
	blocks: operations systems function,
	network element function (NEF),
_	mediation function (MF), workstation
Q	function (WSF), and
A	data communication function (DCF)
В	managed network elements
С	Q-adapter function (QAF)
D	MIB
	Customer in TMN conceptual model
Q	are provided service by
А	Service provider
A B	Service provider Customer provider
A B C	Service provider Customer provider Workstation

	Security in network is concerned with
	preventing to information by
	unauthorized personnel. It involves not
	only technical issues, but also
	establishment of well-defined policies and
Q	procedures.
A	illegal access
В	Service in network
с	Data loss
D	Report generation
	Mapping the network, and setting up the
	configuration parameters in
	management agents and management
	systems. Network management in the
	broad sense also includes network
Q	provisioning handled by
A	Configuration management
В	Network performance
С	Security in network
D	Circuit provisioning
	Network management is based on
	knowledge of network topology. As a
	network grows, shrinks,
	or otherwise changes, the network
	topology needs to be updated
	automatically. This is done by the
Q	in the NMS .
А	Provisioning
В	Тгар
С	Security system
D	discovery application

	can be done using the
	broadcast ping on each segment and
	following up with further SNMP queries to
Q	gather more details on the system.
A	Autodiscovery
В	Тгар
С	Maintainance
D	Recovery
	play a significance role in
	network maintainance. They are useful for
	testing network performance and for
Q	gathering packet statistics on all OSI layers.
А	Protocol analyzers
В	Fault finding
С	Recovery
D	Tracing
	Fault detection is accomplished using
	either a polling scheme or by the
Q	enner a poining scheme of by the
А	ping
В	generation of traps
С	specific application
D	IT manager
Q	What is trap?
А	unsolicited alarms
В	comands
С	get pdu
D	set pdu
	After having located where the fault is, the
Q	next step is to the fault .
A	solve

В	restore
С	isolate
D	avoid
	Which of the following is Popular protocol
Q	analyzers ?
A	ping
В	arp
С	NMS
D	Sniffer
	Which of the following is Popular protocol
Q	analyzers ?
A	NetMetrix
В	ping
С	arp
D	NMS
	In ATM network management, which of
	the following is not a function fault
Q	management?
A	Logging failure reports
В	Isolating faults via demand testing
С	Notifying the NMS of a detected failure
D	Event flow control
	In ATM network management, which of
	the following is not a function
Q	performance management?
А	Performance monitoring
В	Isolating faults via demand testing
С	Traffic management
D	Network data collection
	In ATM network management, network
Q	security management deals with

	Confidentiality of stored and transferred
A	information
В	Performance monitoring
С	Configuration of BICIs
D	Network data collection
	Which of the following is not a objective of
	network security management in ATM
Q	network?
	Confidentiality of stored and transferred
А	information
	Dta integrity of stored and transferred
В	information
	Availability of correct access to ATM
С	facilities
D	Isolating faults via demand testing
	In management of LAN Emulation,
	enables a network manager
Q	to change the configuration of ELANs.
A	elanMIB
В	busMIB
С	UNI
D	BICI
	In Emulated LAN MIB, which of the
	following is not a step neccesary to
Q	creating an ELAN?
A	Create a new ELAN in the elanMIB
	Create a LES entry for that ELAN, using the
В	lesMIB
	Create BUS entry for that ELAN, using
С	busMIB
D	Isolating faults via demand testing

	ATM and frame relay are in which information is transferred through electric circuit layer as packets. ATM has fixed packet size and frame relay has variable packet size.
Q	
A	Virtual circuit network
В	datagram network
С	virtual private network
D	virtual public network
	The is 10-bit virtual circuit identifier. It is used to assign frames to the specified Permanent Virtual Circuits
Q	or Switched Virtual Circuits.
A	Framw Relay identifier
В	Data Link Connection Identifier
С	Cell relay identifier
D	Circuit connection identifier
Q	As a cell arrives at a VP switch,changes
A	only the port
В	only the VPI
С	both its VPI and Port
D	Segment No
	Type of ATM service used for regroup
	timing requirements?
Q	
A	variable bit rate
В	constant bit rate
С	available bit rate
D	unspecified bit rate

	ATM packets are of fixed size, each being
Q	long
A	53 Bit
В	53 Bytes
C	48bytes
D	5 Bytes
Q	TNM Architecture has perspective
A	1
B	2
C	3
D	4
	Which of the following is not a applications
Q	of network managment system:
A	configuration management
B	fault management
C	security management
D	Data management
	In TMN terminology, the switching
	systems, circuits, terminals, etc., which
	comprise a telecommunications network,
Q	are known as
A	Operations support systems (OSS)
B	Network Elements (NEs)
C	Mediation devices (MDs)
D	Q Adapter (QA)

	A MIB object has access defined as read-
	only in its MIB definition. What, among the
	following, is the right SNMP access level
	that should be specified in the SNMP
	community, so that the manager can write
Q	into the object?
А	Read-write
В	Write only
С	Manager cannot write
D	Read-only
	What happens when SNMP get next is
	done on the very last variable in the MIB?
Q	Choose the closest answer:
	The variable does not exist, and the agent
А	cannot create it.
В	Syntax error
	Variable does not exist OR End of MIB
С	error
D	Sub-id not found
	Which SNMP message can be used for
Q	doing a MIB walk?
А	SNMP traps
В	SNMP get next
С	SNMP get
D	SNMP get-bulk
	The ISO Network Management Forum
	divided network management into
Q	Functional Areas.
A	Four
В	Five
С	Тwo
D	Seven

	Fault Management does not involve
Q	following step
A	Detect the Fault
	Determine the rest of the network from
	the failure so that it can continue to
В	function
	Reconfigure or modify the network in
С	such a way as to minimize the impact
D	Configuration audit
	This is the common network failure
Q	problem.
A	Improper IP address allocation
В	Uniform access control to resources
С	Backups, data security
D	Security logging
	Network management functions can be
	broadly summarized as OPMAP i.e.
	Operations Administration Maintenance
Q	and
A	Power
В	Provisioning
С	Process
D	Performance
	: It is the administrative
	part of network management which is
	used to keep track on all problems in the
Q	network management system.(NOC)
А	Trouble ticket administration
В	Configuration Management
С	Performance Management
D	Multimedia service

	TMN is ITU-T (International
	Telecommunication
	Union - Telecommunications) standards
	and is based
	On,
Q	
A	CIM data model
В	SMTP/FTP Protocol
С	TCP/IP specification
D	OSI, CMIP/CMISE specifications
	In Two-Tier Network Management
	Organizational Model Management
Q	database can be access by
A	Manager
В	Managed Objects
С	Unmanaged Object
D	Agent
	In Common Management Information
	Service Elements (CMISEs) M-GET service
	comprises request and response message.
Q	It require confirmation from the
А	Manager
В	Agent
С	Object
D	Managed Object
	CMIP uses the facilities
	provided by Remote Operation Service
	Element (ROSE) for all its request and
Q	responses
Α	transaction-oriented services
В	Fault detection
С	Ticketing

D	Detecting error
	management on the Internet is done
	through the cooperation of three
	protocols: SNMP,
Q	
A	SMI, and MIB
B	MIB AND MDB
C	IP AND FTP
D	UDP AND IP
	The message is generated by an
	agent process. It is generated only on
	receipt of a get-request, get- next-
	request, or set- request message from a
Q	management process.
A	Тгар
B	get-response
<mark>C</mark>	Alarm
D	Interrupt
	The is the time elapsed
	between the last initialization or re-
	initialization of the element and the
<mark>Q</mark>	generation of the trap.
A	time-stamp trap
B	Specific Trap
C	Generic trap
D	coldStart
<mark>Q</mark>	A pairing of SNMP MIB views with an SNMP access code is called
A	A Organization Profile
В	a community profile
C	A Network profile
D	Access Profile

TMN architecture made up of five function
blocks: operations systems function,
network element function (NEF),
mediation function (MF), workstation
function (WSF),and
data communication function (DCF)
managed network elements
Q-adapter function (QAF)
MIB

Q A

В

C D

Q A

В

С

D

Q

A B

C D

Q A ______ is a standard monitoring specification developed by the Internet Engineering Task Force (IETF) in 1992 to support monitoring and protocol analysis.

Remote Monitoring User based security Model Proxy Server Proxy Agent The control of users access to network resources through changes are the main responsibilities of

Security Management Accounting Management Reactive Fault Management Reconfigured Fault Management